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Abstract 

Sharp dips which are observed in inelastic thermal 
diffuse 77ray scattering intensities, and which move 
rigidly when the crystal is rotated, are attributed to a 
?-ray Kikuchi effect. Some geometrical aspects of the 
effect are explored using the (A20,Aog) approach 
recently developed by Mathieson [Acta Cryst. (1982), 
A38, 378-387] for disecting a Bragg reflexion. In 
particular, it is shown that observation of the effect 
should not be very sensitive to angular divergence of 
the incident ?-ray beam, but should depend on the 
effective source size, the angular resolution of the 
detector and on basic crystal properties such as size, 
absorption coefficient and mosaicity. Some useful 
general results for coordinate transformations between 
reciprocal space and (A20,Aco) space are also presented. 

1. Introduction 

?-ray diffraction may be used to separate elastic and 
inelastic scattering under Bragg peaks with an energy 
resolution of the order of 10 -s eV, by means of nuclear 
resonance absorption of the y-rays emitted recoilessly 
from a M6ssbauer source. This technique has been 
used to study thermal diffuse scattering (TDS) by 
crystals, e.g. O'Connor & Butt (1963), Butt & 
O'Connor (1967), Butt & Solt (1971), Zasimov, 
Lobanov, Rildiger & Kuz'min (1976) and Albanese, 
Chezzi, Merlin & Pace (1972), and in some cases 
where the system is known to undergo a phase 
transition, e.g. Lin, Spalt & Batterman (1976), Jex, 
Milliner, Knoth & Loidl (1980) and Ti, Finlayson, 
Smith, Cashion & Clark (1983). In many of these 
experiments a sharp (relative to the angular divergence 
of the incident beam) dip in the TDS has been 
observed, e.g. O'Connor & Butt (1963) for the 200 
reflexion of LiF, Zasimov et al. (1976) for the 002 
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reflexion of pyrolytic graphite (ef. Milliner, Maetz & 
Jex, 1979), Kashiwase, Kainuma & Minoura (1982a) 
for the 200, 400 and 600 reflexions from KC1, and Ti et 
al. (1983) for the 440 reflexion from VaSi. It is possible 
that anomalies in TDS could occur as a result of the 
intrinsic physical properties for certain materials (such 
as VaSi), where there are corresponding anomalies in 
the elastic behaviour which are often accompanied by a 
phase transition. However, this cannot be the case for 
systems such as KC1, where there is no anomalous 
elastic behaviour. 

Various explanations for the effect have been 
suggested, in particular: 

(i) O'Connor & Butt (1963) attributed the dips to 
extinction effects; 

(ii) Zasimov et al. (1976) offered an explanation 
involving mosaic blocks and a minimum wavevector 
magnitude, qmin, such that phonons with q < qmi, are 
forbidden, qmin being characteristic of the mosaic block 
sizes in the crystal; and 

(iii) Milliner et al. (1979) propose that the dips be 
attributed to incorrect values of the absorber effi- 
ciency. 

More recently, Kashiwase, Kainuma & Minoura 
(1982a) have carried out a detailed investigation of the 
effect for KCI using a position-sensitive proportional 
detector (PSPD). These authors concluded that the dip 
in their TDS profiles arose from secondary elastic 
scattering of the TDS away from the diffracted beam 
direction, i.e. a form of extinction of the TDS. Although 
this interpretation lacks clarity concerning detail and 
also is confusing in some respects regarding the angular 
divergence of the source, we believe it to contain the 
essence of a correct explanation for many of the dips 
found in TDS data measured using the M6ssbauer 
technique. The basic physical phenomenon is essen- 
tially the p-ray analogue of the Kikuchi effect, which is 
well known in electron diffraction (Kikuchi, 1928; or, 
for a general discussion, see, for example, Cowley, 
1975; Hirsch, Howie, Nicholson, Pashley & Whelan, 
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1965). The effect has recently been observed with 
X-rays by Kashiwase, Kainuma & Minoura (1981, 
1982b,c). A corresponding classical mechanical 
Kikuchi effect is also found to occur in the blocking 
and channelling of fast charged heavy particles 
(Chadderton, 1966, 1970). 

The terminology adopted in the present paper is to 
refer to characteristic lines arising from Bragg diffrac- 
tion of inelastically scattered ?- or X-rays as Kikuchi 
lines. Such lines are therefore quite distinct from those 
arising from purely elastic scattering out of, say, a 
divergent incident beam. These are called Kossel lines 
(Kossel, 1935; Kossel & Voges, 1935; Lonsdale, 
1947), in keeping with current terminology in electron 
diffraction (see e.g. Cowley, 1975), though if no clear 
distinction is made, they are often termed K lines (e.g. 
Cowley, 1975). 

The salient features of Kashiwase et al.'s results for 
KCI are that: 

(i) the dips in the TDS move such that A20 = Aco, 
where A20 denotes the angular setting of the detector 
pixel or slit away from the Bragg condition, and Am is 
the offset of the crystal rocking angle away from the 
Bragg condition, all being taken in the plane of 
diffraction (see Fig. 1); 

(ii) the dips in the TDS are quite sharp (typically 
with FWHM ~0.3 o in A20) and quite deep, often down 
to near-zero intensity; 

(iii) the TDS profiles in some cases tend to be 
markedly asymmetric about the dip, especially when 

. Ao9 is large. 
In order to help establish rules for ascertaining the 

origin of dips in inelastic scattering, particularly when 
these may reflect intrinsic solid-state properties of the 
sample such as soft modes near a phase transition, we 
first explore briefly some of the geometrical aspects of 
TDS and the ?-ray Kikuchi effect (cf. Kainuma, 1961). 

x 

, x 
" \  \ 

', crystal rotation \\ 
\ \  0.) ~ (~) ($) ~\\ (£)1 ~ ) source slits 28")/" ', ~ ) , ..~ ~__~___._. I ~ _  detector ~ "  

- - -  ] , i  ~ . . . .  ~ I . . . . .  

slit 
~detector /~...source 

(a) (b) 
Fig. 1. (a) Schematic illustration of the scattering geometry for 

resonant M6ssbauer scattering in the plane of diffraction for the 
case of the rotating-crystal (Aco) - rotating-detector (A20) 
configuration. (b) Corresponding illustration for the rotating- 
crystal (Aw tsl) - rotating source (A20 ts~) configuration. 
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2. Characteristics of the resonant ~-ray diffractometer 
and of the scattering geometry 

The resonant ?-ray diffractometer arrangement differs 
from that of a conventional X-ray diffractometer in 
that it has extremely well-defined wavelength with 
A2/2 ~ 10 -12, and permits extremely sharp dis- 
crimination between elastically and inelastically scat- 
tered photons, to the extent that inelastic scattering 
events involving energy transfer of the order of 10 -8 eV 
may be discriminated. 

However, because ?-ray sources are very weak by 
X-ray standards, the sources tend to be large in area. 
Typical ?-ray count rates on the Bragg condition are 
100's of counts min -1. The angular collimation of the 
incident beam is accordingly poor, and large sample 
crystals are used. 

Although the ?-ray diffractometer is very sensitive 
for detecting the inelastic scattering of ?-rays, it should 
be appreciated that, for the purposes of exploring the 
scattering geometry of the instrument, the magnitude of 
the momentum of the one-phonon scattered ?-rays 
remains constant to ~1 part in 106. Thus the usual 
procedures for depicting elastic X-ray scattering may 
be employed, the Ewald-sphere construction in this 
case denoting the conservation-of-energy condition (see 
Fig. 2), at least to within a small number of phonon 
energies. Throughout the present work, quantities in 
reciprocal space are calculated assuming 2 = 1 so that, 
for example, k~' and k~ in Fig. 2 are unit vectors. 
Vectors in reciprocal space are distinguished with an 
asterisk. 

3. Reciprocal space and its relation to (A20,Aoj) space 

In conventional X-ray diffraction the diffractometer 
typically has two variable angular settings (see Fig. 
la): Aco, the rocking angle of the crystal, and A20, the 
angular setting of the detector pixel. Both lie in the 
plane of diffraction and are measured relative to the 
reference direction of the incident beam. It is these very 
same operational parameters of a diffractometer which 
have recently been used by Mathieson (1982, 1983a) in 
exploring the nature of the X-ray intensity distribution 
in the neighbourhood of a Bragg reflexion. In the 
?-ray case, the detector may often be immovable (see 
e.g. Ti, Clark & Cashion, 1982) so that the operational 
parameters are in practice the crystal setting angle 
[Ao9 °)] and the source setting [A20O)], which are 
simply related to A20 and Aco (see Appendix A). 

A reciprocal-space diagram showing the exact Bragg 
condition in the plane of diffraction, using the Ewald 
construction, is given in Fig. 2(a). This shows the 
incident- and diffracted-beam unit vectors k~ and k*, 
respectively, together with the reciprocal-lattice vector 
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Fig. 2. (a) Ewald construction at the exac t  Bragg condition for 

scattering from the r.I.p. G (with r.l.v, d~) involving unit 
scattering vectors k~ (incident beam) and k* (scattered beam). 
With variation of the various experimental scattering parameters 
the sampling point in reciprocal space moves as follows: (i) along 
~,* for variation of 2; (ii) along Ae~* for rotation of the crystal 
about the normal to the plane of diffraction; (iii) along A20* for 
rotation of the detector; and (iv) along $*(_Lk~) for variation in 
the angle of incidence (i.e. angular divergence of the source). (b) 
Ewald construction for scattering when both the crystal (Ao~) 
and detector are offset from the exact Bragg condition. The r.l.p. 
G has moved from G,,,, while the detector is at P, so the new 
scattered-wave vector is ks*, and the reciprocal-space vector 
(phonon wave vector) connecting P and G is q*. (c) The origins 
of the Kikuchi effect which arises when the diffusely scattered 
beam ks*, is at the correct angle (i.e. A2O = Aco) for Bragg 
scattering from the rotated Bragg planes (dashed line AA' 
through P), i.e. ks*, becomes the incident beam (giving a 'defect 
line') and k o the new diffracted beam (giving an 'excess line') 
for an Ewald construction taken relative to P as origin. 

(r.l.v.) d~ to the reciprocal-lattice point (r.I.p.) G, and 
also the directions at G of the principal instrumental 
and sample factors in reciprocal space. These are" 

(i) the crystal rocking-angle direction Ao~*, which is 
perpendicular to d~, and is defined positive in the sense 
that clockwise rotation of the crystal looking down on 
the plane of diffraction leads to a sampling of reciprocal 
space in the positive v direction (see Figs. 2a and 3); 

(ii) the wavelength direction k*, which is parallel to 
d* through G; 

(iii) the direction A20*, which is tangential to the 
Ewald sphere at G and at an angle o f - 0  B to ~,*; 

(iv) the source-distribution direction S*, which is 
perpendicular to k* through G. 

Thus, for example, the presence of a mosaic 
distribution of crystallites leads to a smearing out of 
the reciprocal lattice along Ao}*, while angular di- 
vergence in the incident beam leads to a smearing out 
of the sampling of reciprocal space along S*. Finite 
resolution of the detector (e.g. pixel size in a PSPD) 
leads to smearing out of the sampling of reciprocal 
space along A20*. When two or more factors are 
simultaneously present, the combined effect is typi- 
cally treated as a convolution, and a 'resolution ellip- 
soid' in reciprocal space results (Cooper & Nathans, 
1967; and also § 5). The effect on reciprocal-space 
sampling of, for example, a movement of the detector 
away from the Bragg condition by a small offset A 2 0  

(Fig. 2b) is to displace the scattered-beam direction 
along A20* from G to P (under the tangential 
approximation). The vector for sampling in reciprocal 
space is then given by OP.  On the other hand, if the 
crystal is rocked by a small angle Aog, then the 

zxJ 

L. 
\ \  

v q ~  P (q,qo) 

G 0B A2O * 

Fig. 3. Diagram of reciprocal space about G showing the 
relationship between the oblique coordinate system with A20* 
and Ate* as axes [coordinates (u,t,)] and the rectangular system 
taking k* and Ate* as axes li.e. coordinates (qa,q~,)]. 
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reciprocal-lattice point moves in the -Aco* direction 
from G,,, to G, and the new origin of coordinates is 
taken to be at G. Thus, if the detector remains fixed at 
A20 = 0, then the diffracted beam is sampled at the 
point Go, relative to G (Fig. 2b), and this is in the 
positive Ac0* direction. More generally, the two 
variations may be considered to occur simultaneously 
(Fig. 2b) so that the new diffraction setting of the 
instrument is (A20,Aco), corresponding to a general 
point P in reciprocal space, expressed here in either 
polar coordinates (q,~o) or rectangular coordinates 
(qa,qo,) about G. 

The oblique coordinates, (u,v), in reciprocal space of 
the point (A20,Aco) are (see Fig. 3) 

u = A20; v = (2 sin 0n) Aog, (1) 

which, in turn, give for the polar coordinates (q,~0) and 
rectangular coordinated (qa,q,o) of P the expressions 

cos ~0 sin (0 n + ~o) 
A 2 0 -  - -  q; Ao9= q 

cos O n sin 20n 

and 

e) ] sin 20 n [ sin On cos q~o 

Thus the relationship between the reciprocal space, 
(q~t,q~o), and (A20,Ao))-space coordinate systems is that 
of a homogeneous affine transformation. Parallel 
straight lines in one space map into parallel straight 
lines in the other space, ellipses map into ellipses, and 
equally spaced points on one straight line map into 
equally spaced points on another straight line. The 
origin is an invariant point. 

It is useful to consider the relationship between 
(A20,Am) space and reciprocal space, for the following 
special cases. 

3.1. Straight line at angle ~o o to k* 

A straight line through G at an angle ~00 to ~* has the 
equation 

1 
Ao9 =½[1 + cotOBtan%]A20=--A20; (3) 

O 

therefore, in order to scan along a line at this angle to 
k* in reciprocal space and in the plane of diffraction, a 
scan ratio of a =- A2O/Ao9 is required. For example, a 
scan parallel to S* (~00 = O n) requires a = 1, which 
corresponds to an 09/0 scan where detector and crystal 
are rotated together with equal incremental steps. 

3.2. Circle centred at G 

A circle of radius q centred at G in reciprocal space 
has the equation in (A20,Aog) space: 

( A 2 0 )  2 - -  4 sin 2 O n AtriA20 + 4 sin 2 O n do92 = q2, (4) 

which describes an ellipse whose major axis lies at an 
angle ~, to the A20 axis, where 

tan 2~, = - 4  sin 2 On/[1 - 4 sin 2 0n]. (5) 

4. Thermal diffuse scattering and the ),-ray Kikuchl 
effect 

The Kikuchi effect essentially arises when inelastic 
diffuse radiation generated within the crystal is in- 
cident on crystal planes at the proper angle to undergo 
a Bragg reflexion (see e.g. Cowley, 1975). In the case of 
),-rays, the principal source of diffuse scattering for a 
crystal set near to a Bragg reflexion is from TDS about 
that Bragg reflexion. Geometrically, this occurs when 
the rotated Bragg planes AA' (Fig. 2c) are at the 
correct angle for Bragg diffraction of the diffusely 
scattered beam ks*,, i.e. so that the angle CPA is equal 
to the Bragg angle, On. This condition requires that 

A20 + 0 B = Ao9 + 0 n, (6) 

which in turn leads to the condition for the y-ray 
Kikuchi effect: 

Z20= Am, (7) 

indicating that the Kikuchi point, P, moves rigidly with 
the crystal and gives a Kikuchi locus in (A20,Aw) space 
lying along the direction of an o9/0 scan in the plane of 
diffraction. More generally, the defect Kikuchi line for 
given Aw extends perpendicular to the plane of 
diffraction through (A20,Aw), see e.g. Hirsch et al. 
(1965). Concomitant with the depletion in intensity of 
the diffuse radiation at A20, there is of course an excess 
intensity Kikuchi line near the incident beam and at 
angular position Aw = A20 away from O (see Fig. 2e). 

4.1. Isotropic thermal diffuse scattering 

To illustrate geometrical aspects of the ),-ray Kikuchi 
effect, we first consider the simple case of an isotropic 
distribution of TDS intensity about G (see e.g. Willis & 
Pryor, 1975), namely 

I~-Ds(q) = c / q  2, (8) 

where q is the vector displacement in reciprocal space 
of the observation point, P, away from the rotated 
reciprocal-lattice point, G (see Fig. 2b), and is equal to 
the phonon wave vector for a one-phonon scattering 
process from G to P. For small q, the form (8) arises 
from the long-wavelength acoustic phonons. More 
generally, however, it may also contain an angular 
factor consistent with the point-group symmetry of the 
r.l.p., which is present, in general, even for an elastically 
isotropic crystal (see e.g. Walker & Chipman, 1970). 

Substituting (4) for q2 in (8), we transform the 
reciprocal-space TDS distribution into (d20,dto) space 
to obtain 
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IXDS = c[ (A20) 2 -- 4 sin 2 O n A~  A20 

+ 4 sin 20nAco21-1. (9) 

A Mathieson (contour) plot of this function in 
(A28,AoJ) space (Mathieson, 1982) is given in Fig. 4 for 
8 n = 25 o, which approximates the 600 reflexion of KC1 
with 14.4 keV y-rays. Included on the plot are lines 
through G corresponding to: (i) the locus of the Kikuchi 
effect (K); (ii) the major axis of the TDS ellipse (E); 
(iii) the maximum of the TDS for a A20 scan (i.e. with 
fixed AoJ) 

A20 max = (2 sin 2 0~)Ao9; (10) 

and (iv) the maximum of the TDS for a Aco scan (i.e. 
with fixed A20) 

Alp max = ½A20. (11) 

Thus, for example, (10) describes the linear locus, as a 
function of Aog, of the maxima of the TDS in the A20 
scans of the type presented by Kashiwase, Kainuma & 
Minoura (1982a), which would be expected if the TDS 
were isotropic. Positions of the various important 
features in the TDS profile, such as the Kikuchi 
minimum and the TDS maximum as a function of Aoa 
using A20 scans [i.e. profiles such as those obtained by 
Kashiwase, Kainuma & Minoura (1982a) with a 
stationary PSPD] are readily predicted using Fig. 4. 
Only when the crystal and detector are exactly set for 
the Bragg condition (i.e. A20 = Ao9 = 0) do all features 
coincide. This provides a means of orienting crystals 
using TDS and quite analogous to the well-known 
method in electron diffraction and microscopy using 
the Kikuchi lines and bands (see e.g. Hirsch et al., 
1965). In practice, the zero point for the o~ scale on a 
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diffractometer is ill defined, and consequently the value 
of A~o will be affected. Accordingly, values of Ao9 
quoted by Kashiwase et al. (1982a) should not be 
regarded as absolute, but rather as indicating that the 
condition Ao9 = 0 may be established empirically using 
the Kikuchi effect and other TDS features. For 
example, Ao9 in their Fig. 6 would seem to be very 
nearly zero, rather than the - 9 '  quoted. 

The effect on the TDS contours of changing 0 n is 
illustrated in Fig. 5. For small 0 n the TDS ellipse is 
elongated along the Am axis, while for increasing O n (up 
to n/2), the TDS ellipse rotates until the major axis lies 
along the line A~o = ½A20 corresponding to the 2 
direction. 

4.2. Anisotropic thermal diffuse scattering 

Although perhaps not immediately obvious from 
Fig. 4, both A20 and Ao9 scans for spherically 
symmetrical TDS distributions are symmetrical about 
their respective maxima, as can be seen by examination 
of (4) and (8). However, the introduction of an angular 
factor in (8) leads in general to asymmetric TDS 
profiles. If we assume one-phonon scattering, (8) 
becomes (see e.g. Willis & Pryor, 1975) 

C 
ITDS(q) = -~ .  l 1 + A((0)], (12) 

where q2 is given by (4) and A ((0) is an angular factor 
which must satisfy the appropriate point-group sym- 
metry of a r.I.p., taking into account the orientation of 
the plane of diffraction in reciprocal space, the lowest 
possible symmetry being that of a centre of inversion. 
In order to illustrate the effect of anisotropy of TDS in 
reciprocal space on Mathieson plots, we have con- 

Z~to % 
,o. ~ !  .. Aw b 

• -#Z / 

U 
. . . .  I / /  

' L A20 

Fig. 4. Mathieson plot showing TDS contours in (A2&A~) space 
corresponding to isotropic TDS contours in reciprocal space. Fig. 5. Mathieson plot showing TDS contours in (A28,Aog) space 
Also shown are : (i) the ellipse major axis (along E); (ii) the locus corresponding to isotropic TDS in reciprocal space for various 
of TDS maxima for A28 scans 1/(2 sin 2 On); and (iii) TDS maxima values of 8 B with: (i) ellipse major axes (solid lines); and (ii) locii 
for A~o scans (½A28). of TDS maxima in A28 scans (dashed lines). 
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sidered the special case of a cubic crystal, for which a 
simple analytical expression for A(~0) is available 
(Waller, 1925; Walker & Chipman, 1970). Values of 
elastic constants appropriate for KC1 at room tem- 
perature (Enck, 1960) have been used and the results 
for a 600-type reflexion (Fig. 6) and a 660 reflexion 
(Fig. 7) have been plotted (see also Lonsdale, 1942). In 
the case of 600 the elastic anisotropy has displaced the 
TDS maximum so that it lies close to the Ao9 axis. Thus 
both A20 or Ato profiles of the TDS are very nearly 
symmetrical. Modification to the shape of the intensity 
contours for the 660 reflexion with the introduction of 

anisotropic TDS is, however, more complex than for 
the 600 reflexion, and this further complicates the 
Mathieson plots. As can be seen from Fig. 7, the locus 
of the TDS maximum for the anisotropic case moves 
only slightly towards higher A20, relative to the case for 
the isotropic crystal, but the A20 or Ao9 profiles of the 
TDS are now highly asymmetrical in general. Never- 
theless, it should be noted that TDS profiles through the 
origin are always symmetrical (the origin being a centre 
of inversion), and that the asymmetry in the profiles 
increases with increasing distance of the scan away 
from the origin. 

Z -o , 

, A20 

Fig. 6. TDS contours in (A20,Aog) space corresponding to the 
(h,k,O) plane of reciprocal space for the isotropic TDS case (thin 
contours) and an elastically anisotropic cubic crystal (thick 
contours) (0 B = 25 o and a 600 reflexion). 

'°T 1" %*/ .~/_~,~- 

-,.o ~ 1.o &20 

• " - F O  

Fig. 7. Mathieson plot showing TDS contours in (A20,Aa~) space 
for isotropic TDS in ,reciprocal space and an elastically 
anisotropic cubic crystal (0 B = 35 o and 660 reflexion). 

4.3. Other sources of  asymmetry in scattering profiles 

In addition to asymmetry arising from the intrinsic 
character of the TDS contours about a r.I.p., the 
following physical factors could also lead to asym- 
metry in measured TDS profiles: 

(i) a non-centrosymmetric distribution of scattering 
due to non-uniformity in the angular and size dis- 
tribution of mosaic blocks; 

(ii) anomalous absorption - especially when the 
sample is nearly perfect (see Takagi, 1958; 
Olekhnovich & Olekhnovich, 1981); 

(iii) intrinsic resolution factors of the instrument (see 
§ 5). 

5. Resolution and crystal factors 

No measuring instrument is perfect. Sampling of 
reciprocal space by a diffractometer is always neces- 
sarily smeared out to a greater or lesser extent by 
instrumental factors such as source size (s), angular 
divergence of the incident beam (d), wavelength spread 
(L), and angular resolution of detector (D). In addition, 
such properties of the crystal as size (c) and mosaic 
distribution (M) inevitably lead to a further smearing 
out in the sampling of reciprocal space. The vector 
nature of the various resolutional and crystal factors is 
displayed in Fig. 8. In practice, all are present 
simultaneously (with the exception in the ?-ray case of 
the A2 spread) and are typically assumed to combine 
convolutionally leading, for say Gaussian distribu- 
tions, to a resolution ellipsoid in either reciprocal or 
(A20,Aco) space (Cooper & Nathans, 1967). An 
important feature which is clear from Fig. 8 is that the 
effects of angular divergence of the source (i.e. Sdc and 
Sas ) lie along the A20 = Am line, or Kikuchi-line locus 
in (A20,Aog) space. Thus a high degree of inci- 
dent-beam collimation is certainly not crucial for 
observation of the Kikuchi effect (cf. Kashiwase et al., 
1982a,b,c). Kikuchi effects which are much narrower 
than the angular divergence of the incident beam are to 
be expected (see e.g. Ti et al., 1983), a fact well known 
in electron diffraction, where Kikuchi lines involving 
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inelastic scattering of electrons can also be observed 
with convergent beams (Carpenter & Spence, 1982), as 
well as Kossel lines which arise from elastic scattering 
of the electrons. Such Kikuchi lines are more readily 
observed by having an extremely small source size. 

6. Conditions favouring a strongly observable ?-ray 
Kikuchi effect 

As pointed out in the previous section, angular 
divergence of the incident beam is not a crucial factor 
in the observability of Kikuchi lines. On the other hand, 
from the physical origins of the effect and the 
associated geometrical conditions, the following factors 
would appear to be important in determining the 
magnitude and sharpness of the Kikuchi effect. 

(i) The angular resolution of the detector in A 2 0  
must be better than the angular width of the Kikuchi 
line (see Fig. 8). 

(ii) The mosaicity of the specimen will largely 
determine both the natural width and visibility of the 
Kikuchi line (Lonsdale, 1947; Bushuev, Laushkin, 
Kuz'min & Lobanov, 1981); the more perfect the 
crystal, the narrower the Kikuchi line. On the other 
hand, viewed from the other extreme of the 'ideally 
imperfect' crystal, where the Kikuchi effect would be 
absent, one would first expect the visibility of the 
Kikuchi effect to increase with the increase in the 
degree of perfection due to the increase in reflectivity, 

Sds - divergent beom ond 
Iorge source, but smoll 
xtol 

Sdc - divergent beam end 
Iorge xtol, but smell 
source size 

Ssc large source, // beom 
(Soller sl,ts) ond 
Iorge xlol 

/ / / / / 

M Sdc ' 

Ssc 

Sds 

~ e  

Fig. 8. Simple illustration of resolution factors in (A20,Aco) space 
for the resonant ),-ray diffractometer, with smearing out of 
sampling volume in reciprocal arising from: (i) D - detector 
resolution (along A20 axis); (ii) L - finite spread in ,l (not 
significant for resonant ?-ray experiment and so shown only as a 
broken vector directed along Ao9 = ½A20); (iii) M - effect of 
mosaicity of the crystal (along Am axis); (iv) Sd~ - effect of the 
combination of a divergent incident beam and a large source but 
a small crystal (along A~o = A20); (v) S a c -  effect of the 
combination of a divergent beam and large crystal but a small 
source size (along Aw = ,J28); (vi) S= - effect of the combination 
of a large source size and large crystal but a parallel beam (along 
A20 axis). 

but eventually to decrease towards the perfect-crystal 
limit due to instrumental broadening of the line and 
decrease in integrated reflectivity. 

(iii) The extinction length, t e (being that distance 
over which the beam is attenuated by e - 1  due to 
diffraction for the given Bragg reflexion), should be 
small relative to the absorption length, t a. Thus, the 
crystal should tend towards the highly perfect limit and 
the structure factor should be reasonably strong. 

(iv) The crystal should be sufficiently thick in the 
diffracted-beam direction for there to be a significant 
probability for secondary Bragg scattering of the TDS. 
The crystal should be at least as thick as t e, and 
preferably thicker. 

(v) Choice of scan (coupling between A w  and A20)  
will influence the strength of the Kikuchi dip. The 
sharpest dip will occur for a scan which is normal to 
the locus of the Kikuchi line, i.e. an (o~/-0)-space scan. 
Conversely, for scans along the locus of the Kikuchi 
line (i.e. w / O  scans), the Kikuchi effect should be 
invisible. 

7. Applications of the ),-ray and X-ray Kikuchi effect 

Apart from its intrinsic interest, the ?.ray and X-ray 
Kikuchi effect will find useful applications in crystal 
studies. We suggest the following: 

(i) orientation of crystals and determination of the 
AoJ = 0 position (see e.g. Hirsch e ta l . ,  1965); 

(ii) X-ray and ?-ray energy-loss studies using the 
crystal as both sample and analyser (Grenville-Wells, 
1951; Bushuev et al., 1981). This could provide 
information on both the type and the location of light 
impurity atoms in a heavier material; 

(iii) studies of regions where Kikuchi lines cross, 
whence it should prove possible to obtain phase-angle 
information for structural studies (see e.g. Hurley & 
Moodie, 1980; Post, 1977); 

(iv) determinations of rocking-curve widths rela- 
tively free from convolution with the angular dis- 
tribution of the source; 

(v) combination of rocking-curve measurements 
(Andersen, Golovochenko & Malt, 1976)with energy 
studies [see (ii) above] might also provide information 
on both the type and location of light impurity atoms in 
a heavier matrix; 

(vi) separation of intrinsic anomalies in TDS, 
associated with unusual physical properties of the 
crystal (such as soft-phonon modes) from Kikuchi and 
other geometrical effects. 

8. Conclusion 

Sharp dips which are observed in inelastic (thermal 
diffuse) ?-ray scattering intensities, and which move 
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rigidly when the sample crystal is rotated, are due to a 
),-ray Kikuchi effect. An analogous neutron Kikuchi 
effect is also to be expected (Wilkins, 1983). 

The authors are very grateful to Dr A. McL. 
Mathieson for numerous helpful discussions on the 
application of his (A20,doJ) approach to the Kikuchi 
problem, and also to Drs J. D. Cashion, T. R. 
Finlayson, S. L. Mair, A. Olsen and C. J. Rossouw. 

APPENDIX A 

The rotating-source-rotating-crystal configuration 

By interchanging source and detector in the geometry 
shown in Fig l(a)  and adopting the convention for 
directions of rotation shown in Fig. 1, the relationship 
between the rotating-source configuration 
(A20(S),Aa) (s)) and the conventional (A20,Ato) descrip- 
tion is as follows: 

1 = ( a - -  1) (a ts) -- 1) (A 1) 

A20 is) = d 2 0  (A 2) 

A w  (s) = ( A 2 0 -  At, o). (A3) 

Simple reciprocity arguments show that the scatter- 
ing geometry and equivalent scattering diagrams for the 
rotating-source configuration (see Fig. 1) are obtained 
from those presented earlier (Fig. 2) by a rotation of n 
about the scattering vector. 

APPENDIX B 

The absolute angular displacement of the measure- 
ment (A20) may be written as 

A20 = aAo.) + A20 {m, (B1) 

where the first term in (B l) gives the displacement due 
to coupled motion of the detector and crystal, with a 
coupling ratio of a, and A20  tm is the angular offset of 
the measurement relative to the reference position aAo9 
(see Fig. 9). In the case of a PSPD which is scanned 
with origin setting given by trdoj, A20 tm denotes the 
angular readings of the measurement in the frame of 
the moving detector relative to the origin in the 
detector. 

If instead of working in absolute readings for A20, 
one chooses to work in the offset reading, A20 tin, then 

A20 (m ] [A2O] , 

which, on using (2), may in turn be expressed in terms 
of reciprocal-space coordinates. Alternatively, the 
reciprocal-space coordinates corresponding to a 
(A20(m,Am) setting are given by 

q,, [ - s in  0 B 

[ cos 0 .  
! 

[ - s in  On 

0 [A2O ~m] 

( 2 -  a) sin [ Am ] '  (B3) 

so that (A20(m,Ao.)) measurements may immediately be 
transferred into corresponding reciprocal-space 
measurements via (B3).* The transformation is clearly 
a homogeneous affine transformation with all the as- 
sociated properties (see § 3). 

Types of scan 

In conventional diffractometry, rotations of the de- 
tector (20 arm) and of the crystal (09 setting) are often 
coupled, either mechanically or by steering software. 

sou rce  

lcryslol rotation 

0 .... ,o, I 

. . . . . .  1 
Fig. 9. Relationship between absolute angular displacement, A20 

(in laboratory frame), and relative angular displacement, A20 ~°) 
(in detector frame), when the scan ratio (coupling between 20 
and o~ axes) is o. 
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Abstract Introduction 

On the basis of some mathematical and physical 
characteristics of isomorphous-replacement experi- 
ments, it has been possible to derive a simple rule called 
Rlso that permits the selection of those triplet phase 
invariants that have values close to zero or 7~. Test 
examples show that large numbers of invariants may be 
evaluated by means of R~s o with reliabilities that are 
potentially high, but depend, of course, on the reliability 
of the experimental data. In order to apply the rule, it is 
not necessary to know the chemical nature of the 
substituent atoms, their positions in the structure or 
their occupancy. The rule R~s o affords new insights into 
the inter-relationships among isomorphous-replace- 
ment data and an alternative selection method to the 
use of the conditional joint probability distribution. A 
formula has also been derived for estimating the value 
of the cosine of triplet phase invariants for the native 
substance, cos (q~he + (~kP + (~(la+l~)P), in terms of 
measured structure-factor magnitudes and structure- 
factor magnitudes associated with the contribution 
from substituent atoms. 

0108-7673/83/050800-06501.50 

Isomorphous-replacement experiments provide infor- 
mation that is quite useful in selection procedures for 
finding large numbers of triplet phase invariants, whose 
values are close to zero or ~ even in very complex 
structures. One such procedure has already been 
described by Hauptman (1982a), in which the concept 
of the conditional joint probability distribution has been 
applied to the isomorphous-replacement technique, 
resulting in a formula whose validity has been 
demonstrated in an extensive test calculation 
(Hauptman, Potter & Weeks, 1982), The various 
conceptual aspects and features of the joint probability 
distribution distinguish the latter approach from the 
one pursued in this article. 

The joint probability distribution, as generally used 
in crystallography and from which the conditional 
distribution is derived, may be viewed as counting the 
relative number of atomic configurations (each given 
unit weight) associated with some infinitesimal volume 
in the space of the variables, say E 1 . . . . .  tp~,.... In 
those cases where some small region of the space is 
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